

IBM Systems & Technology Group

© 2011 IBM Corporation

Peter Relson
IBM Poughkeepsie
relson@us.ibm.com
9 August 2011

PROGxx and LLA
Enhancements

z/OS 1.12

Session 9703

Permission is granted to SHARE Inc. to publish this
presentation paper in the SHARE Inc. proceedings;
IBM retains the right to distribute copies of this
presentation to whomever it chooses.

1

©2011 IBM Corporation

* 2

The following are trademarks of the International B usiness Machines Corporation in the United States a nd/or other countries.

The following are trademarks or registered trademar ks of other companies.

InfiniBand is a registered trademark of the InfiniBand Trade Association (IBTA).
Intel is a trademark of the Intel Corporation in the United States and other countries.
Linux is a trademark of Linux Torvalds in the United States, other countries, or both.
Java and all Java-related trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries.
Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of The Open Group in the United States and other countries.
All other products may be trademarks or registered trademarks of their respective companies.
The Open Group is a registered trademark of The Open Group in the US and other countries.

Notes:
Performance is in Internal Throughput Rate (ITR) ra tio based on measurements and projections using sta ndard IBM benchmarks in a controlled environment. The actual throughput that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user' s job stream, the I/O configuration, the storage co nfiguration, and the workload processed.
Therefore, no assurance can be given that an indiv idual user will achieve throughput improvements equ ivalent to the performance ratios stated here.
IBM hardware products are manufactured from new par ts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this pr esentation are presented as illustrations of the m anner in which some customers have used IBM product s and the results they may have achieved.
 Actual environmental costs and performance charact eristics will vary depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or featu res discussed in this document in other countries, and the information may be subject to
change without notice. Consult your local IBM busi ness contact for information on the product or serv ices available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their publi shed announcements. IBM has not tested those produ cts and cannot confirm the
performance, compatibility, or any other claims rel ated to non-IBM products. Questions on the capabil ities of non-IBM products should be addressed to th e suppliers of those products.
Prices subject to change without notice. Contact y our IBM representative or Business Partner for the most current pricing in your geography.
This presentation and the claims outlined in it wer e reviewed for compliance with US law. Adaptations of these claims for use in other geographies must be reviewed by the local country counsel for
compliance with local laws.

* Registered trademarks of IBM Corporation

AIX*
CICS*
DB2*
DFSMSdss
DFSMShsm
DFSMSrmm
DS6000
DS8000*
FICON*

FlashCopy*
HiperSockets
IBM*
IBM eServer
IBM logo*
IMS
Infiniband*
Language Environment*

Parallel Sysplex*
ProductPac*
RACF*
Redbooks*
REXX
RMF
ServerPac*
SystemPac*

System Storage
System z
System z9
System z10
System z10 Business Class
Tivoli*
WebSphere*
z9*

Trademarks
z10
z10 BC
z10 EC
z/OS*
zSeries*

©2011 IBM Corporation

* 3

Abstract

 The presentation will cover the new functions made available within
Contents Supervisor component in z/OS 1.12. PROGxx enhancements
are in the areas of dynamic exits, dynamic LNKLST, dynamic LPA, and
defaults. There are also LLA enhancements.

©2011 IBM Corporation

* 4

Agenda

� Library Lookaside (LLA)
�Dynamic Exits
�LLA Busy
�LLA restart improvement

� PROGxx
�Dynamic exits
�Dynamic LNKLST
�Dynamic LPA
�Defaults

� Summary

©2011 IBM Corporation

* 5

Agenda

� Library Lookaside (LLA)
�Dynamic Exits
�LLA Busy
�LLA restart improvement

� PROGxx
�Dynamic exits
�Dynamic LNKLST
�Dynamic LPA
�Defaults

©2011 IBM Corporation

* 6

LLA Dynamic Exits CSVLLIX1, CSVLLIX2

� CSVLLIX1 (LLA fetch exit) and CSVLLIX2 (LLA
staging exit) are added to the dynamic exits
facility, so they can be managed as are other
dynamic exits through PROGxx parmlib members

� The default for each: when the EXIT1 or EXIT2
statement in CSVLLAxx does not indicate OFF, if
no exit routines are associated with the exit then
the system will add exit routine CSVLLIX1 to the
first and/or CSVLLIX2 to the second.

� This preserves current behavior

©2011 IBM Corporation

* 7

LLA Dynamic Exits (cont)
� If exit routine(s) have been associated via

PROGxx parmlib member and/or SETPROG
command, then the default processing is not
done. In that case, all manipulations are to be
done via the dynamic exits facility

� Once the exit routines are managed by your use
of PROGxx for those exits, use of the EXIT
statements within CSVLLAxx is no-op'd. Thus
you do not disable the EXIT by changing EXIT1 or
EXIT2 statement in CSVLLAxx to indicate OFF
but use the dynamic exits facility (such as the
EXIT statement in PROGxx with the DISABLE
option)

©2011 IBM Corporation

* 8

Agenda

� Library Lookaside (LLA)
�Dynamic Exits

�LLA Busy
�LLA restart improvement

� PROGxx
�Dynamic exits
�Dynamic LNKLST
�Dynamic LPA
�Defaults

©2011 IBM Corporation

* 9

LLA Busy

� LLA is manipulated by a modify command
� Prior to z/OS 1.12, if one modify is in-process

when another is received, the second get a “busy”
response

� With z/OS 1.12, up to 255 modify's can be started
without getting “busy” (a 256th would get “busy”).
Requests received while an early one is in-
process get queued and processed in turn; the
requestor does not get a “busy” response.

©2011 IBM Corporation

* 10

Agenda

� Library Lookaside (LLA)
�Dynamic Exits
�LLA Busy

�LLA restart improvement
� PROGxx

�Dynamic exits
�Dynamic LNKLST
�Dynamic LPA
�Defaults

©2011 IBM Corporation

* 11

LLA Automatic Restart

� Suppose SUB=MSTR is incorrectly omitted when LLA
starts, such as START LLA,nn=XY
which asks to use parmlib member CSVLLAXY

� LLA detects the omission of the recommended
SUB=MSTR and terminates this START and begins a
new one adding SUB=MSTR

� Prior to z/OS 1.12: it did not propagate nn=XY so the
restart was with the default parmlib member. This
likely was not what you wanted.

� With z/OS 1.12: it does what you surely want:
propagate nn=XY so the restart uses parmlib member
CSVLLAXY

©2011 IBM Corporation

* 12

LLA Restart z/OS 1.13

� Suppose you started LLA (e.g.,
S LLA,LLA=XY,SUB=MSTR) then terminated LLA (P
LLA) and then restarted LLA but omitted the “LLA=”
specification (S LLA,SUB=MSTR)

� Prior to z/OS 1.13, this would default to “no parmlib
member” and LLA would use its default of “only the
LNKLST”.

� As of z/OS 1.13, this now defaults to “the parmlib
member that you successfully used the last time this
IPL that you started LLA” (CSVLLAXY in the example)

� If you truly want “only the LNKLST” when you restart,
you may specify LLA=NONE when you start LLA (S
LLA,LLA=NONE,SUB=MSTR).

©2011 IBM Corporation

* 13

Agenda

� Library Lookaside (LLA)
�Dynamic Exits
�LLA Busy
�LLA restart improvement

� PROGxx
�Dynamic exits
�Dynamic LNKLST
�Dynamic LPA
�Defaults

©2011 IBM Corporation

* 14

Dynamic Exits

� REPLACE
� PARAM
� ExitType
� FoundButError

©2011 IBM Corporation

* 15

Dynamic Exits Replace

� Have you ever wanted to be able to change an exit routine?
� You can do it today using DELETE then ADD, or MODIFY to

INACTIVE followed by MODIFY back to ACTIVE. But both of
these have the disadvantage that there is some time before the
re-ADD when the exit routine does not exist at all.

� This can be a show-stopper for a security-related exit routine
where it could be vital that the exit routine always be active

� The REPLACE function of the EXIT ADD statement in PROGxx
or SETPROG EXIT,REPLACE command, or the CSVDYNEX
REQUEST=REPLACE macro addresses this situation.

� When REPLACEing an active exit routine, there is always one
(and only one) copy of an exit routine that gets control at the
exit point. Not 0. Not 2.

©2011 IBM Corporation

* 16

Dynamic Exits Param

� An exit routine might be able to take advantage of
having a constant parameter passed to it

� This can be defined on the EXIT ADD statement of
PROGxx or the SETPROG EXIT,ADD command, or
by the CSVDYNEX REQUEST=ADD macro

� The 8-byte parameter is placed into access registers
0/1 on entry to the exit routine (this is a bit strange,
but is the only place available for all situations)

� DISPLAY PROG,EXIT,EXITNAME=xx,DIAG displays
the data (it assumes the data is printable, so you will
only see the data if it is printable; for this reason, we
recommend to exploiters that they use printable data)

©2011 IBM Corporation

* 17

Dynamic Exits ExitType

� There are two main types of exits
− Installation Exits (type is “installation”)
− Exits intended for use by programs (type is “program”)

� z/OS 1.12 provides functionality by which
− The owner of an exit can identify which of these types

their exit is (many exits are not yet identified)
− The DISPLAY PROG,EXIT command can ask to

display
� All exits marked as “installation”
� All exits either marked as “installation” or not

marked at all. This is the “NotProgram” option as it
indicates that the exit is not marked as a program
exit

 You might be interested only in NotProgram exits

©2011 IBM Corporation

* 18

Dynamic Exits FoundButError

� On Exit ADD / REPLACE, you can request that
the system issue a message (or not) when there
is an error.

� A new option is added, Message=FoundButError,
� This indicates to write a message on any of the

cases covered by Message=Error except for the
case of “Exit routine not found”

� This was used in the implementation of the LLA
dynamic exits, but could be useful to other
dynamic exits exploiters

©2011 IBM Corporation

* 19

Agenda

� Library Lookaside (LLA)
�Dynamic Exits
�LLA Busy
�LLA restart improvement

� PROGxx
�Dynamic exits

�Dynamic LNKLST
�Dynamic LPA
�Defaults

©2011 IBM Corporation

* 20

Dynamic LNKLST

� Update Delay
� LNKLST UPDATE (via PROGxx parmlib member or SETPROG

command) is unpredictably dangerous in uncounted numbers of
ways, yet we know that you like to try it.

− Part (not all) of the danger comes from in-flight processing
that runs aground when the “old LNKLST” is closed and
freed

� With the DELAY operand value (numbers of seconds), you can
ask that the completion of this command wait the specified time
before closing (and hence freeing). This gives in-flight requests
additional time to complete.

� The command itself will not complete until this delay has been
taken into account

©2011 IBM Corporation

* 21

Agenda

� Library Lookaside (LLA)
�Dynamic Exits
�LLA Busy
�LLA restart improvement

� PROGxx
�Dynamic exits
�Dynamic LNKLST

�Dynamic LPA
�Defaults

©2011 IBM Corporation

* 22

Dynamic LPA

� AddAlias
� SVC Number
� LPA Add by fully qualified pathname
� Deferred LPA wait
� Query Only

©2011 IBM Corporation

* 23

Dynamic LPA AddAlias

� When you are adding a module that has aliases, it is up to
you whether you want dynamic LPA to add those aliases
or not (or perhaps just do the main name). You provide all
the names that you want processed.

� Prior to z/OS 1.12, If you do want “all the aliases”, you
have to know what they are and specify them.

� With z/OS 1.12, if you want all the aliases, you can either
specify them all or you can simply request “AddAlias” via

− (parmlib) PROGxx: LPA ADD MOD(...) ADDALIAS
− (command) SETPROG LPA ADD MOD(...) ADDALIAS
− (macro) CSVDYLPA

REQUEST=ADD,ADDALIAS=YES.

©2011 IBM Corporation

* 24

Dynamic LPA SVC Number

� When replacing an SVC routine on behalf of some
authorized application, it can be a nuisance even if you
can get the module into storage. The SVCUPDTE
programming interface has existed for a long time to hook
together the module with the SVC table processing.

� With z/OS 1.12, that replacement is simplified in some
cases, as you can specify on a dynamic LPA operation
both to fetch the module and also to update the SVC table
using the SVC number information that you provide.

� Note that this does not help much with new SVCs because
this function updates only the module address. But SVCs
usually have other attributes (such as the “type”). Those
other attributes are not supported by this mechanism.

©2011 IBM Corporation

* 25

Dynamic LPA by Fully Qualified Pathname

� Prior to z/OS 1.12, dynamic LPA modules could come
from a PDS or a PDSE. But they could not come from
a file system.

� The CSVDYLPA macro is enhanced to allow you to
indicate the file from which the module is to be
fetched by specifying the fully qualified file system
pathname

� CSVDYLPA REQUEST=ADD,...,
 PATHNAME=pathname,PATHNAMELEN=pnl

� This functionality is not provided for use in PROGxx
or by the SETPROG command. It is available only by
the programming interface.

©2011 IBM Corporation

* 26

Dynamic LPA Deferred LPA Wait

� LPA built during IPL (PLPA, MLPA, FLPA) cannot use
PDSEs. Dynamic LPA can use PDSEs. Some applications
might need to use PDSE program objects in LPA and
need to know when it is safe to do so

� Prior to z/OS 1.12, you could add PDSE program objects
to LPA at the tail end of the IPL (COMMNDxx parmlib
member) but an application could not know that things
were ready for it. This left it up to you to sequence these
events

� With z/OS 1.12, you can have LPA ADD statements in
your IPL-time PROGxx specification (prior to z/OS 1.12
these specifications were not processed). Now they will
be, at a deferred point late in the IPL.

©2011 IBM Corporation

* 27

Deferred LPA Wait (cont)

� New function is provided for an application to ask that
it wait until all of the deferred ADD processing is
complete

� Thus you can set up for this application by placing
data into the IPL-time PROGxx, and the application
can wait, knowing that when it wakes up the ADD
processing is done and the application can use what
you provided.

� If the ADD processing is already done when the WAIT
request is received, the WAIT is a no-op

©2011 IBM Corporation

* 28

Deferred LPA Wait (cont)

� If the application can be changed to do things itself:
− CSVDYLPA REQUEST=QUERYDEFLPA,

 DEFLPASTATE=the_state
CLI the_state,CsvdylpaDefLpaComplete
JE deferred_LPA_is_complete

− CSVDYLPA REQUEST=DEFLPAWAIT (requires
authorization) or

− LINK EP=CSVDLPAW (does not require authorization)
− (The QUERY is optional. You could just do the “WAIT” and it

works fine if deferred LPA is already complete)
� If the application is not changed

− EXEC PGM=CSVDLPAW (a pre-step in a job if a
subsequent step would have required waiting)

©2011 IBM Corporation

* 29

Dynamic LPA Query Only

� When adding an entire library of parts to dynamic LPA (or a
subset using a mask other than “*”), have you wondered how
much storage ((E)CSA, (E)SQA) this was going to take, in case
it was “too much”?

� The CSVDYLPA macro for REQUEST=ADD with
MODINFOTYPE=MEMBERMASK supports a QueryOnly=YES
option.

� It does much of the processing that normal REQUEST=ADD
does, except it stops short of doing the actual “ADD”, instead
just keeping track of how much storage would have been used
if the “ADD” were done

� Output is mapped by new DSECT LPMEAQ within macro
CSVLPRET

� The idea is to use this prior to an IPL so that you can adjust
your (E)CSA and (E)SQA amounts accordingly

©2011 IBM Corporation

* 30

Agenda

� Library Lookaside (LLA)
�Dynamic Exits
�LLA Busy
�LLA restart improvement

� PROGxx
�Dynamic exits
�Dynamic LNKLST
�Dynamic LPA

�Defaults

©2011 IBM Corporation

* 31

PROGxx Defaults

� Sometimes there are options that you know you always
want, but they are not required and you might forget.

� New syntax is provided to let you define some things to be
defaulted

� For example, when creating a new LNKLST set
SETPROG LNKLST DEFINE NAME(xxx)

� You almost always want to copy from what you currently
have, thus adding COPYFROM(CURRENT)

� If you forget, you get a practically useless LNKLST set that
has only the SYS1.xxxLIB data sets (more or less)

� This is one of the defaults that you can now define

©2011 IBM Corporation

* 32

PROGxx Defaults (cont)

� When I create a LNKLST set, always do
COPYFROM(CURRENT)

− DEFAULTS LNKLST COPYFROMCUR
� When I create a LNKLST set, make me always specify

COPYFROM (I will identify the source to copy from)
− DEFAULTS LNKLST REQCOPYFROM

� When I do dynamic LPA, always process aliases for the
modules I specify whether I provide the aliases or not

− DEFAULTS LPA ADDALIAS
� Default DISPLAY PROG,EXIT to display only exits of a

particular type
− DEFAULTS EXIT INSTALLATION | NOTPROGRAM | ALL

©2011 IBM Corporation

* 33

PROGxx Defaults (cont)

� The defaults apply to
− Statements within PROGxx
− The SETPROG command

� The defaults do not apply to the programming
interfaces (CSVDYNEX, CSVDYNL, CSVDYLPA)

©2011 IBM Corporation

* 34

Coexistence Considerations

� There is a coexistence consideration: The new PROGxx-specified
functions will fit into one of two cases:

− Rejected by an earlier release (subsequent parmlib statements in
the same member will still be processed)

− Accepted by the earlier release (the function was shipped but not
documented and possibly not fully tested at that earlier release)

� Primarily due to the second bullet above, even though it is somewhat
of a pain if you need to fall back, we recommend that you use a
unique parmlib member for specifying the functions new in R12.

©2011 IBM Corporation

* 35

Summary

� There are many CSV-related enhancements in the
areas of

− LLA
− Dynamic Exits
− Dynamic LNKLST
− Dynamic LPA
− PROGxx in general

©2011 IBM Corporation

* 36

Publications

� z/OS V1R12.0 MVS System Commands – SA22-7627-
13

� z/OS V1R12.0 MVS Initialization and Tuning Reference
– SA22-7592-21

� z/OS V1R12.0 MVS Installation Exits SA22-7593-16
� z/OS V1R12.0 MVS Programming Authorized

Assembler Services Reference (ALESERV –
DYNALLOC) - SA22-7609-11

